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Abstract  n an attemp: o develop an efficient analytical approach for the electromechanical
analvsis ot lanmunated prezoclectric structures. an cxact transter-matrix-based methodology is
presented. The state space equations for a three-dimensional piczoelectric lamina are first derived
by climinating the in-plane stresses and electric displacements from the governing equations. The
transfer matrix is rendered in block form by judiciously arranging the state variables and its property
is then explotted to minmnize the computational effort. Using the approach, an exact analysis of
coupled clectroclastic behavior of a rectangular piezoelectric plate of 6mm crystal symmetry sub-
jected to a mechanical or electrical load is presented. A wmply supported square plate made of
bartum ttanate is analyzed as a numerical example und results are compared to those from the
corresponding uncoupled aralvsis

I INTRODUCTION

With the recent development of piczoelectric ceramics and polymers and associated tech-
nological applications. mechanical behavior of piezoelectric structural systems has been the
topic of numerous investigations [see Tzou and Anderson (1992): Lee et al. (1993); and
Rao and Sunar (1994) for extensive references]. Recent studies on piezoelectric materials
have resulted in qualitative as well as quantitative understanding of interactions between
the mechanical and electric fields in infinite and semi-infinite piezoelectric media with or
without crack-like defects or nclusions (Pak. 1990: Wang. 1992; Chen, 1993; Dunn,
1994 Lee and Jiang. 1994a: Sosa and Castro. 1994) However. electroelastic behavior of
laminated piezoelectric composite structures has received very little attention despite the
fact that many piezoclectric devices are constructed in laminated form as in the case of
piezoelectric resonators. multilayer capacitors (MLC). or multilayer actuators (MLA). In
an MLA. for example, which consists of layered piezoelectric ceramics with interconnected
electrodes, electrode migration and internal stresses are of great concern as a result of high
operating electric fields and strains associated with actuution. To date. however, models of
strain actuator and substrate systems are very limited because most of the studies have been
focused on the implementation of control algorithms. Most of the models in the literature
are based on ¢ither the Kirchhoff hypothesis or shear-deformable plate theories which do
not account for the continuity of interlaminar shear stresses. The lack of more exact models
or solution methods for laminated piczoelectric structures is the direct motivation for the
study presented herein.

Recently. it was suggested that the state space approach be used for the analysis of
laminated piezoelectric structures (Sosa. 1992 Jiang and Lee. 1993). Based on the mixed
formulation of elasticity. the state space approach converts a boundary value problem to
an equivalent inttial value problenm in terms of stute variables (Bahar, 1977). Once the
transfer matrix for cach laver is found. a global matrix can be assembled by introducing
interlayer contact and boundary conditions. The order of the global matrix does not depend
on the number of lavers since the matrix s multiplicative in nature for certain interlayer
contact conditions (Lee and Jiang 1994b). Therefore. once the transfer matrix of a single
layer or lamina is obtained. any arbitrary lamination of lavers can be accommodated by
taking advantage of the muluphcative nature of the transter matrix.

u
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Based on the linear theory of piezoelasticity. a state space approach for exact analysis
of three-dimensional piezoelectric lamina is presented in this paper with the aim at develop-
ing an efficient analytical methodology for laminated piezoelectric structures. Since the
eight state variables appearing in the state equations directly represent the boundary
conditions on the upper and lower surfaces. any arbitrary loading conditions can be taken
into account. All physical quantities associated with the problem (i.e. stresses and electric
displacements as well as mechanical displacements and electrical potential) can be solved
directly from the state equations. Using the state space approach developed in the study,
an exact solution is obtained for a simply supported rectangular thick lamina in the form
of infinite series. This solution can be evaluated to any desired level of accuracy by retaining
an appropriate number of series terms. A notable feature of the solution approach presented
herein is that the computational task is significantly reduced by rendering the transfer
matrix in block form and exploiting the symmetry properties of the block matrices.

In contrast to some existing formulations on ¢lectroelasticity which collapse in the case
of pure elasticity, the present formulation can recover as a special case pure elasticity so
that pure elasticity and piezoelectricity can be studied on equal footing. This makes it
possible to do a direct comparison between the two theories in detail, thereby revealing
intricate mechanoelectric coupling effects. Moreover, the same approach can be used for
non-piezoelectric layers (e.g. structural layers and electrodes) especially when modeling
multiply-laminated piezoelectric structures such as MLAs. A square barium titanate plate
with simple supports is analyzed as a numerical example and results are compared to those
from the corresponding uncoupled analysis. It should be noted that the solution presented
in this study is a full three-dimensional solution and preserves the elastic and electric
anisotropy as well as the full electromechanical coupling.

2. EQUATIONS OF PIEZOELECTRICITY

Here. we present a brief summary of linear piezoelasticity. More general exposition of
nonlinear piezoelasticity can be found elsewhere (e.g. Eringen and Maugin, 1991). The
description of piezoelectricity is based on the combination of elements of elasticity and
electrodynamics, where the basic variables are the stress ¢, and strain s, the electric dis-
placement D. and the electric field E. If body forces and electric charge density are ignored,
the electroelastic field is governed by

Vig=0. V-D=0, (1)

where the first equation is the equilibrium equation of elasticity and the second is Gauss’s
law of electrostatics. The elastic displacement u and the electric potential ¢ are introduced
as follows:

§ = ﬁ(Vu+uV). E= —Vog, (2)

where the second expression implies the quasistatic approximation, viz. Vx E = 0. In the
above equations, only 13 relations exist for 22 unknowns. The additional nine equations
are provided by the constitutive relations reflecting electro-elastic coupling effects. These
relations can be derived from thermodynamics potentials (Tiersten, 1969) and can be cast
into four different forms depending on the choice of independent variables. If the strains
and electric field are chosen as the independent variables, the constitutive equations take
the following form:

6=Cs—e'E (3a)
D =es+¢E, (3b)

where C is the fourth order tensor of elastic moduli measured at constant or zero electric
field. e the third-order piezoelectric tensor. ¢ the second-order dielectric tensor measured at
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constant or zero strain. The generalized Hooke's law for pure elasticity and the constitutive
description of rigid dielectrics can be recovered by setting the piezoelectric constants e equal
to zero.

For common piezoelectric materials of 6émm crystal symmetry, the constitutive
relations (3) can be written as

a, ) ¢, C- Cyo 0 0 0 N S0 0 ey ]
Ta> CI: (‘|| ( 1 U “ () LNas 0 0 €1 E N
o1 Co Co Coo 0000 o 0 0 ey \E‘ f
< > = < = ¢ 5 )
Tas 0O 0 0 Co 0 0 y | 0 e 0 \lE;l
o1 0 0 0 0O ¢, 0 . e 0
g L0 0 0 0 o O, . 0O 0 |
(4a)
N B ‘ ° ,
‘Dll 0O 0 0 0 e. 0 } &, 00 wll
oY 1
iDyi=1 0 0 0 . 0 0 < 40 ey 0 |(E (4b)
I‘D3 ,\ e e e 00 0 | 0 0 en {E;,

where Co, = €, — C~. Constitutive relations of other classes of crystal symmetry can be
found elsewhere (Nye. 1976). It is noted that most man-made piezoelectric materials
commonly used for fabrication of multi-layered clectromechanical devices can be rep-
resented by the 6mm symmetry class.

1 STATE SPACE FORMULATION

The state space approach which has its roots in classical dynamics has been widely
used in modern control theory. Based on the mixed formulation of elasticity proposed by
Vlasov and Leontev (1966). this approach has also been utilized by several authors to treat
problems in elasticity (Bahar. 1977 Steele and Kim, 1990 ; Lee and Jiang, 1994b). Recently,
Sosa and Castro (1994) applied the state space methodology to obtain a point-force solution
for a piezoelectric half-space. Unlike in control theory. however. derivation of the state
space equation from the field equations is not always straightforward in the case of elasticity
or piczoelectricity. Since the field equations of piezoelectricity involve variables that cannot
be prescribed on the boundary. elimination of these variables is requisite to obtain the state
space equation. Following the process of state space approach in elasticity, the field equation
can be recast in the following matrix form by eliminating the in-plane stresses o,,, g5, and
g, as well as the in-plane electric displacements D, and D. from the governing equations
(1)-(3):

X (¥, .vaxs) (5)

and
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Q 0
Y(Xp-\‘l--‘.l) =[ 0 Q3 X(.’C;,Xz,.\’g), (6)
where
X(x xa,x0)= U V g3 Dy 03 6235 W ¢)T M
Y(x,,x2.X3) = [0, 0,2 02 Dy Dy}7 ®)
" | €ys ]
o 0 -0 — =0
Cus o Cot '
1 €s
0 — (s ——0,
T] — C44 C44 (9)
- -, 0 0
€5 €is . eis 2 5
SO s e 0 [+ 22 @+
Cu Tl ( CM)( |
_A1(A‘I’_C(x(~(~g _(A: +C66)6%2 ——A46| _Alal
T, = — (A2 4+ Coo)ix —CeoCi— A0 —Asly  —A30, (10)
-—A4(—\'l —'A4(’:3 A83; Ae33
‘_Av,(“'] _AXE’_’ ‘4€33 _AC33
A, ¢, A-C, A, A,
Ql =| Ceol Cem(ﬂ‘l 0 0 (11)
A,c, A ¢, Ay A
€, €ys
Ml 0 0 ¢
C.. (blx + C44) [
Q. - RS (12)
€5 €is
0 0 —(&,+ 0,
Cus ( I C“) 2
with

A, = (C165:+C Caztqy — Cligay; —2C 585,043+ Cyy03) A4

Ay = (C12€33 4+ C 12 Crrtry — Ciaeay —2C 563,633+ Cize3,) A4

Ay = (Cze53—e,, ()4

As = (Cz83:+€5,04:) 4

A= (e3:+Crien) . 13)

where ¢, = ¢/,

The above eqn (5) is the state space equation for piezoelasticity where eight unknowns
3. G2 035 Dy, U, V, W and ¢ are chosen as the state variables, where u = {U, V, W}. It
should be noted that the block structure of the coefficient matrix in (5) is not a coincidence
but, in fact, a product of judiciously ordering the state variables in order to minimize the
computational effort as will be shown below. It should also be noted that the state space
equation for piezoelasticity is structurally the same as the state equation for pure elasticity
(Iyengar and Pandya 1983) except for the two additional quantities due to the electric field
contribution. The state space equation for pure elasticity can be recovered by setting the
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piezoelectric constant. ¢,. to zero. In such a case. the mechanical quantities are independent

of the electrical quantities since the coupling coefficients in the transfer matrix vanish.

4. EXACT SOLUTION FOR RECTANGULAR PIEZOELECTRIC PLATE

Here we employ the state space equation to find an exact solution for a rectangular

plate which is simply supported on all four edges. The edge conditions are given by :

a

G-

y=l=HW=0¢p=0 at v=0 and «

J)

U=W=¢p=0 at =0 and b,

(14)

The state variables which exactly satistv the boundary conditions can be written by

Substituting the above expressions into (3) leads to the tollowing matrix equation:

0 P
Sz

where

C(vol) = 22 C,
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A+ Coon’ (A +Co)én —ALL =3¢
Q _ (A2_+_('f‘h);’,’ (‘hh;:+‘4\r’: _As;’] _A‘n . (19)
A< A Aess Aesqy
4:«; A,; A();; VAC;}
where = mm;x and n = nm;b. Note that in the above equations the subscripts m and » are

dropped for brevity.
The solution to (16) can be written as (Gantmacher, 1960):

S(z) = exp [ZK]S(0) = TS(0), (20)

where the exponential matrix T = exp [ZK] is the transfer matrix that propagates the initial
state vector on the lower surface into the field point at coordinate z. At this point, it remains
to evaluate the transfer matrix explicitly. The evaluation can be done by following the
approach described in Jiang and Lee (1993). In view of the considerable computational
task involved due to the size of the transfer matrix (8 x 8), however, a more efficient
alternative procedure shall be sought to reduce the computational labor in this study. We
shall show in the following that only a 4 x 4 matrix needs to be evaluated for eigenvalues
instead of the original 8 x 8 matrix. Noting the block structure of the transfer matrix, we
rewrite (16) as

1 (R, () 0 AT(R,(z
a8 :[ P_‘( ’}. 1)
d- ?R:(:)f B 0][R.(2)
where
R='C ¥V 6. D7
R.=6,. 6.. —-W —¢! (22)
] 0 Gis ]
Cyy . Cws
| Cs
0 . -9 ——n
A= Cas Cas (23)
—< -n 0 0
Crso Cis 0 ' n eis (&2 +1%)
— I - & — }(&° :
- C.. 7 1 C.. 4 n
AI;::_‘_(v(wh']J (4. +Co)dn Ayl A& 1
B = (Ax+ Coo)in (wfmgj“'-%’?z Asn Asn ) (24)
Al Ay —Aeyy  —Aeyy
41; A:’] —A('x_z _AC]g_

It is noted that the matrices A and B are now rendered symmetric (different from P and Q)
by partitioning and redefining the variables. This symmetry shall be utilized to simplify the
computational task later on. Following the procedure described in Bahar (1977), we write
the solution to (21) as:
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- . A e
Ri(z) =cosh(cy GIR(0)+ ~ sinh(z/H)R,(0)
H

\
_ - B L
R.(2) = cosh (-, H)R,(0)+ - sinh (:\/G)RI (0) (25)
. G
where
G =AB and H = BA. (26)

We note that the above solution still contains both the matrices A and B. We shall exploit
the properties of the matrices involved. It follows from (26) that

G' =(AB)' =B'A' = H (27)
and
G0 = [H —il| = [(H=-i)'| = [H= ]|
for arbitrary 4. Hence. the eigenvalues of G are the same as those of H. It follows also from
(15) that
cosh (zy G) = (cosh(z H)Y' (28)
and

I ]
- smh(z, H) :[ :

[— .r
: sinh (zy G):l ) (29)
H N

G

N

Therefore, the solution (16) can be rewritten entirely in terms of only one matrix, either G
or H. The solution is now given by

- _ sinh (2 G) " =
R, (2) = cosh (= G)R|<0)+Ar““”;\ ,,,,, )] R,(0)
.G
_ snh (2,7 G) | < -
R.(:) = B[ R ey --«)]R.(m ~ cosh (=, G) "R, (0) (30)
G

N
which contains only matrix G. The matrix functions

~ 1 N '77 .

coshia G) and sinh (2 'G)

G

N\

are expanded into a matrix polvnomial as tollows:
cosh(z, G) =3 uaG
"

| .
sinh (-, G) =Y hG. (31
N G 0

where no higher powers of G are needed on account of the Cayley-Hamilton theorem.
Assuming that matrix G takes distinct eigenvalues, say 1o, 1,. > and #;, the coefficients
a,and b, in (31) can be determined as follows:
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| [V omo e n7 ! [ cosh (2
a, I TR cosh (1) (322)
= a
a- i [N )]S ;]’:1, cosh (z15)
LUV; 1 1 7 ;7“; y] COSh(f'h)
r l . ~
— sinh (z1,)
- N ’\//r,l)
(b, L T O [ A R T
1 | T e ——= sinh (zn,)
: neoni o
it - VI L (32b)
b, [ R F R Voo
——== sinh (2n,)
s Lo ooy NLE
1
y— sinh (zn3)
Vs J

Once the matrix functions in (31) are determined, the transfer matrix in (30) can readily be
obtained. Then boundary conditions on the top and bottom surfaces are introduced to
determine the unknown quantities on the boundary. Once all the quantities on the boundary
are determined. (30) and (6) can be used to calculate all unknown quantities at arbitrary z.

S NUMERICAL EXAMPLES

Here, we present a numerical study of a rectangular piezoelectric lamina for which an
exact solution is presented above. The material chosen for the lamina is BaTiO; which has
the following material properties (Berlincourt et a!f.. 1964 ; Shindo et al., 1993): C,, = 16.6,
Co=77C=78Cun=162.Cpy=43 (10" Nm ) :e;, = ~4.4, ¢;,=18.6,¢;5=11.6
(Cm “): g, =112, £, =126 (10 > CVm'). Although the primary objective of this
numerical study is to test the procedure described above, the analysis should also reveal
basic tenets of the electro-elastic coupling in the piezoelectric lamina. For the purpose of
comparison. a purely elastic lamina with the same elastic properties is also considered
(piezoelectric constants are set to zero). It should be remembered that all state variables
(three displacement components. electrical potential, three out-of-plane stresses, and trans-
verse electric displacement) are obtained simultaneously in our approach. The in-plane
stresses and electric displacements (o,,. a,,. a,,. D, and D,) are then obtained from (6).
Although the mechanical and electrical loading is considered separately here for trans-
parency. a combined mechanical and electrical loading, if desired, can be treated without
any additional difficulty. A sinusoidal distribution is assumed for both the mechanical and
electrical loading for the sake of simplicity.

Mechanical loading
A simply supported square lamina (¢ = h = 1 m) of thickness 0.2 (m) is subjected to
a mechanical load on the top surface with the following sinusoidal distribution :

G == a0 (ayia) sin(my/h). “(33)

where a, = 1 (Nm 7). The field point is chosen at x;¢ = 0.75 and y/b = 0.25. Figures 1 and
2 show the variation of U and V. respectively. as a function of the thickness coordinate z
where the solid line stands for the piezoelectric lamina and the dotted line for the purely
elastic one. The in-plane displacements exhibit linear distribution across the thickness of
the lamina. Note that the discrepancy between the two cases is rather small. The transverse
displacement W for the two cases i1s shown in Fig. 3 which demonstrates essentially uniform
distribution across the thickness although its magnitudes are quite different between.the
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two cases. Figure 4 shows the electric potential ¢ across the thickness for piezoelectric
plate. The potential exhibits a polynomial distribution. Note that the electric potential ¢ is
zero in the case of purely elastic plate due to the obvious lack of electroelastic coupling.
Figure 5 shows the distribution of the out-of-plane stress ¢,. (due to the symmetry of the
problem, o,. exhibits similar distribution). Figure 6 shows the distribution of out-of-plane
stress component ¢... It is interesting to note that all out-of-plane stresses take the same
values between the two cases. Figure 7 shows the out-of-plane electric displacement D. and
Fig. 8 shows the in-plane stress o, for the two cases. Note that other in-plane stress
components ¢, and o,, exhibit similar distribution as o, ..

Electric loading
The same plate is loaded electrically on the upper surface by a transverse electric
displacement of sinusoidal distribution :
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D = D, sin (my aisin (7 h) (34)

where D, is taken as I (Gm ). The field point is chosen at the same location as the previous
example of mechanically loaded plate. Figures 9 and 10 show the distribution of the
transverse displacement and electric potential across the thickness of the plate. respectively.
Note that there exist significant discrepancies between the two cases. Figure 11 shows the
distribution of the out-of-plane stress ¢ for the two cases. Figure 12 shows the distribution
of D. which exhibits no discrepancy between the two cases. The in-plane stress g, is shown
in Fig. 13. Figure 14 shows the distribution of the in-plane electric displacement D, which
shows no discrepancy between the 1wo cases despite our expectation otherwise (based on
the previous example of the mechanically-loaded plate). In order to explain this. let us
recall the state equation (6)
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¢ s ¢is
D o= -z, ~¢) .‘I G \(b.
cx o Cyy (), Cx

(35)
where the first term on the right-hand-side ot (33) 1s the electric displacement from the
uncoupled electrostatics and the next two terms represent the difference between the two
cases arising from the electroelastic interaction. For the material chosen for this example,
€,5/Cyy 18 O(10 "y and . is O(10 7). Therefore. the second term in the right-hand-side of
(35) has very little contribution. The coefficient ¢7. ;. of the third term is also very small
due to the same reason. whereas the value of ¢¢p Cx is very close between the two cases.
Therefore. there is no noticeable discrepancy between the two cases.

6. CONCLUDING REMARKS

A state-space-based solution method was developed to study electroelastic responses
of a piezoelectric lamina in an attempt to develop an efficient analytical technique for
electromechanical analysis of laminated piezoelectric structures. The state space meth-
odology developed was employed to obtain an exact solution for a rectangular piezoelectric
lamina with simple supports in the form of infinite seri¢s. A square piezoelectric plate made
of BaTiO; is considered as a numerical example and electromechanical responses were
compared to those of a purely elastic one. It is noted that although only one particular
class of crystal symmetry (namely. 6mm class) is considered. this study entails a reasonable
degree of generality since most man-made piezoelectric materials commonly used in lami-
nated electromechanical devices fall into this svmmetry class and full electromechanical
coupling as well as material anisotropy are preserved. The most interesting result obtained
from the analvsis was that the out-of-plane stresses and electric displacement were not
influenced by the electroelastic coupling. However. further studies are required for more
definitive conclusions on this issuc. The analvtical approach developed herein can readily
be extended for the study of multilayered laminated structures with general interlayer and
boundary conditions. Since the transfer matrix of & layer is known. a global transfer matrix
for a layered structure can be assembled by incorporating the interlayer contact conditions
and boundary conditions. The order of the global transter matrix does not depend on the
number of lavers since the transfer matrix is multiplicative in nature for some common
interlayer contuct conditions (e.g. perfectly bonded contact). For other general interlayer
contact or boundary conditions. such as partially bonded contacts or Winkler mattress, the
global transfer matrix can be constructed by adopung the generalized procedure suggested
in Lee and Jiang (1994b) for purcly elastic layered media.
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