
eJ Pergamon

00211-7683(95)00083-6

Vol. 13. No_ 7. pp. 977·Y90. 1996
('\)r~ right ( 1995 Elsevier SCience Ltd

Pnlltl.:"d III Great BntaIn, All right:s reserved
0020-7683 '96 $1500 +00

EXACT ELECTROELASTIC ANALYSIS OF
PIEZOELECTRIC LAMINAE VIA STATE SPACE

APPROACH

.lONG S LEE and LO!\G L JIANG
Ikparlmcnt \)1' ('1\ Ii and EnvJr(lllmental Engineering, Center for Advanced Materials

I'roc,s'lng I( \\11'1, Clarkson Umversity. Potsdam. ,"Y 13h99-5710. U.S.A

If(, (,'i,ri ~ I ()"Iliher 1994. ill /('11\('<1 fill'll! :4\1,,1,/' 19951

Abstract In a'l :tttel11!" 1,\ dClclop an CftlClclll [Ilwillictl approach lor the electromechanical
analysis of latnlnated ple/oekctnc structures. an exact transfel-nMlrJx-based methodology is
presented. The state ,pacc' equatinns for a three-dimenslOiMI piezoelectric lamina are first derived
b\ eliminating the In-plane sITe",s and electric displacemenb from the governing equations. The
tr'lI1sfer mat ri\ IS rendered 111 blOck form hy Judiciously arranging the stale \ ariables and its property
IS then exploited Il' tnlllimi/e 111,: eotnputational elforL Usmg the approach. an exact analysis of
coupled e!eclro,bslic bcll'l\ lor of a rectangular piCl'oelectrlc pia Ie of 6tnm crystal symmetry sub­
Jected to a medlanlctl I'l' elel'lIK.tl load is presented. A "mpll supporled square plate made of
bal'lutn titanate IS anall/c'd 'h a ilumerical example [md n'sults ,Ill' ,'nmpared tn those from the
cnrrcsponding lIt1(lllpl~d ,1r.al:l,j'-,

I I"TRUDI ( IIU'

With the recent de\clopmcl1t llf piezoelectric ceramics and polymers and associated tech­
nological applications. mcchamcal behavior ofpicloelectric structural systems has been the
topic of numerous im estigations [see Tzou and Anderson (199~): Lee et al. (1993); and
Rao and Sunar ( 1994) for e\ tensiw references]. Recent studies on piezoelectric materials
have resulted in qualitativc as well as quantitative understanding of interactions between
the mechanical and electric fields in infinite and semi-infinite piezoelectric media with or
without crack-like defects or II1clusions (Pak. 1990: Wang. J99~; Chen, 1993; Dunn.
1994; Lee and Jiang. 1994a Sosa and Castro. 1994) However. electroelastic behavior of
laminated piezoelectric com posi te structures has received \ ery Ii ttle attention despite the
fact that many pielOelectrll' de\ices are constructed In laminated form as in the case of
piezoelectric resonators. multIlayer capacitors (MLCI. or multilayer actuators (MLA). In
an M LA. for example. which consists of layered piezoelectric ceramics with interconnected
electrodes. electrode migra tll1n dnd internal stresses a IT of grea t concern as a result of high
operating electric fields and str~lins associated with actuation. To date. however. models of
strain actuator and substr~lte systems are very limiled because most of the studies have been
focused on the implementatinn of control algorithms. \10st of the models in the literature
are based on either the Klrchhotl hypothesis or shear-deformable plate theories which do
not account for the con tin uit y of interlaminar shea I' st (TSses. The lack of more exact models
or solution methods for laminated piezoelectric structures is the direct motivation for the
study presented herein.

Recently. it was suggested Ihat the state space approach be used for the analysis of
laminated piezoelectnc structure~ (Sosa. 199~; Jiang and Lce. 1993). Based on the mixed
formulation of elasticit\. the state space approach comerts a boundary value problem to
an equivalent initial valuc pn1hlem in terms of state \anables (Bahar. 1977). Once the
transfer matrix for each laVe'r I~ jound. a global matn\ can be assembled by introducing
interlayer contact and boundan conditions. The order of the global matrix does not depend
on the number of layers since thc matrix is multtplicallve in nature for certain interlayer
contact conditicHls (Lee and .li'l11g 1994b). Therefore. oncc the transfer matrix of a single
layer or lamina is obtained. Jny arbitrary lamination of layers can be accommodated by
taking advantage of the multlphcatlve nature of the Irans]'er matrix.
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Based on the linear theory of piezoelasticity. a state space approach for exact analysis
of three-dimensional piezoelectric lamina is presented in this paper with the aim at develop­
ing an efficient analytical methodology for laminated piezoelectric structures. Since the
eight state variables appearing in the state equations directly represent the boundary
conditions on the upper and lower surfaces. any arbitrary loading conditions can be taken
into account. All physical quantities associated with the problem (i.e. stresses and electric
displacements as well as mechanical displacements and electrical potential) can be solved
directly from the state equations. Using the state space approach developed in the study,
an exact solution is obtained for a simply supported rectangular thick lamina in the form
of infinite series. This solution can be evaluated to any desired level of accuracy by retaining
an appropriate number of series terms. A notable feature of the solution approach presented
herein is that the computational task is significantly reduced by rendering the transfer
matrix in block form and exploiting the symmetry properties of the block matrices.

In contrast to some existing formulations on electroelasticity which collapse in the case
of pure elasticity, the present formulation can recover as a special case pure elasticity so
that pure elasticity and piezoelectricity can be studied on equal footing. This makes it
possible to do a direct comparison between the two theories in detail, thereby revealing
intricate mechanoelectric coupling effects. Moreover, the same approach can be used for
non-piezoelectric layers (e.g. structural layers and electrodes) especially when modeling
multiply-laminated piezoelectric structures such as MLAs. A square barium titanate plate
with simple supports is analyzed as a numerical example and results are compared to those
from the corresponding uncoupled analysis. It should be noted that the solution presented
in this study is a full three-dimensional solution and preserves the elastic and electric
anisotropy as well as the full electromechanical coupling.

2. EQUATIONS OF PIEZOELECTRICITY

Here. we present a brief summary of linear piezoelasticity. More general exposition of
nonlinear piezoelasticity can be found elsewhere (e.g. Eringen and Maugin, 1991). The
description of piezoelectricity is based on the combination of elements of elasticity and
electrodynamics, where the basic variables are the stress (J, and strain s, the electric dis­
placement 0, and the electric field E. If body forces and electric charge density are ignored,
the electroelastic field is governed by

v . (J = O. V . 0 = 0, (1)

where the first equation is the equilibrium equation of elasticity and the second is Gauss's
law of electrostatics. The elastic displacement u and the electric potential ¢ are introduced
as follows:

s = ~(Vu +uV). E = - V¢, (2)

where the second expression implies the quasistatic approximation, viz. V x E = O. In the
above equations, only 13 relations exist for 22 unknowns. The additional nine equations
are provided by the constitutive relations reflecting electro-elastic coupling effects. These
relations can be derived from thermodynamics potentials (Tiersten, 1969) and can be cast
into four different forms depending on the choice of independent variables. If the strains
and electric field are chosen as the independent variables, the constitutive equations take
the following form:

0= es+eE,

(3a)

(3b)

where C is the fourth order tensor of elastic moduli measured at constant or zero electric
field. e the third-order piezoelectric tensor. e the second-order dielectric tensor measured at
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constant or zero strain. The generalized Hooke's law for pure elasticity and the constitutive
description of rigid dielectrics can be recovered by setting the piezoelectric constants e equal
to zero.

For common piezoelectric materials of 6mm crystal symmetry. the constitutive
relations (3) can be written as

(J I I C, (" : (" 0 0 () III 0 0 e,l

cr ~ 1. CI~ ("'I (" 0 () 0 \' ~ ... 0 0 e,l

("1 1 ("I; C; 0 0 () 0 0
£1

(J.~ ; I; en
>- -- £2

(J:2 ; 0 () 0 ("-l-l () () I" 0 C l5 0
£,

(J) 1 0 0 () 0 C-l-l () \ ~ , (-'I ", 0 0

(J 12 0 () () 0 () ( .(" I" 0 0 0

(4a)

DII 0 () 0 0 e j "\
() (:11 0 0 £,

D,\= () 0 0 (' , 0 0 + 0 <. I 0 £2 (4b)

D~ I ("I ('1.1 C" 0 0 0 0 0 I: 11 £,

where CM = C II - C,2' Constitutive relations of other classes of crystal symmetry can be
found elsewhere (Nye. 1976). It is noted that most man-made piezoelectric materials
commonly used for fabrication of multi-layered clectromechanical devices can be rep­
resented by the 6mm symmetry class.

'. STATE SPACE FORMl [\TIOt'-.

The state space approach which has Its roots in classical dynamics has been widely
used in modern control theory. Based on the mixed formulation of elasticity proposed by
VIasov and Leontev (1966), this approach has also been utilized by several authors to treat
problems in elasticity (Bahar. 1977; Steele and Kim, 1990; Lee and Jiang. 1994b). Recently.
Sosa and Castro (1994) applied the state space methodology to obtain a point-force solution
for a piezoelectric half-space. Lnlike in control theory. however. derivation of the state
space equation from the field equations is not always straightforward in the case of elasticity
or piezoelectricity. Since the field eq uations of piezoelectricity involve variables that cannot
be prescribed on the boundary, elimination of these variables is requisite to obtain the state
space equation. Following the process of state space approach in elasticity, the field equation
can be recast in the following matnx form by elimmating the in-plane stresses UII. U22 and
UI2 as well as the in-plane electric displacements D

I

and D, from the governing equations
(1)--(3):

(5)

and
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where

with
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(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

where ("1; = ("1/ cX;_

The above eqn (5) is the state space equation for piezoelasticity where eight unknowns
ai" a2" a", D" U, V, Wand ¢ are chosen as the state variables, where u = {U, V, W}. It
should be noted that the block structure of the coefficient matrix in (5) is not a coincidence
but, in fact, a product of judiciously ordering the state variables in order to minimize the
computational effort as will be shown below. It should also be noted that the state space
equation for piezoelasticity is structurally the same as the state equation for pure elasticity
(Iyengar and Pandya 1983) except for the two additional quantities due to the electric field
contribution_ The state space equation for pure elasticity can be recovered by setting the
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piezoelectric constant. 1''1" to zero. [n such a case. the mechanical quantities are independent
of the electrical quantities since the coupling coefficients in the transfer matrix vanish.

4. EXACT SOL LTIO:\ FOR RECTAJ\.GLL\R PIEZOELECTRIC PLATE

Here we employ the state space equation to flnd an exact solution for a rectangular
plate which is simply supported on all four edges. The edge conditions are given by:

(J, r' W = 41 = 0 at \ = 0 and u

H' = ¢ = 0 at 1= 0 and h. (14)

The state variables \\ hich e,actly satisfy the boundary conditions can be written by

. . _ _"'I -. _.' 11m,... IInr
rt(\.I._1 - L,L. r-j:"".(_)~111 ~1l1 h

tI

1I1n.\
(:) sin

II

lin)
SIl1

h

1171.,

SIl1 h

Substituting the above expressions mto (5) leads to the following matrix equation:

(15)

where

d - l()
I

S(:) =
(:Q

P l-
oJS (:" (16)

s = :C r if" 15; if 1 ; if If 1Jj I

I 0
{'I' ;

C~, C.j~
~

II
1'"

-1/ /1
P - C~.j C.j.j

'I 0 0

(' ('I' Ci, ) ~o 0

Cl~ :: C~l
'I 0 1: 11 + Co.j (c+rr)

(17)

(18)
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AI (+Co,I]' (A, +C'h)~1) -A4~
- ,( ]

Q
(A, +C,,)~/I COl,:" + A Ill

c - A41] -A,l)
(19)=

A 4c .4 4 /1 AI:" Ae"

A,~ A" Ae '1 -AC"

where ~ = mIT 1- and I) = nIT/h. Note that in the above equations the subscripts m and n are
dropped for brevity.

The solution to (16) can be WrItten as (Gantmacher, 1960):

S(.::) = exp [.::K]S({)) = TS(O), (20)

where the exponential matrix T = exp [.::K] is the transfer matrix that propagates the initial
state vector on the lower surface into the field point at coordinate z. At this point, it remains
to evaluate the transfer matrix explicitly. The evaluation can be done by following the
approach described in Jiang and Lee (1993). In view of the considerable computational
task involved due to the size of the transfer matrix (8 x 8), however, a more efficient
alternative procedure shall be sought to reduce the computational labor in this study. We
shall show in the following that only a 4 x 4 matrix needs to be evaluated for eigenvalues
instead of the original 8 x 8 matrix. Noting the block structure of the transfer matrix, we
rewrite (16) as

(21)

where

D- IT
.'1

0
e l :;

"
- .:;

C44 C44

0
elS

-- /1 - --'1
A = (""4 C44

"- II 0 0

('I_ e e: 11 £'1')"' ,~ '] 0 + --'-- (.;- +1)-)
('44 ( '4" ('44

A I ~c +Co"ll" (.4c+C()~1) A4~ A ,s
B

(A, +C,(.)~II (~(,(, ~ ~ -+- A III' .4 411 A,l)
=

A4~ A4/1 -AI:" -A£',)

A,~ A ,II -A£'n -AC1)

(22)

(23)

(24)

It is noted that the matrices A and B are now rendered symmetric (different from P and Q)
by partitioning and redefining the variables. This symmetry shall be utilized to simplify the
computational task later on. Following the procedure described in Bahar (1977), we write
the solution to (21) as:



where

_ _ A _
R I(.::) = cosh(.::" GlRI(Ol+ sinh('::y'H)R 2 (0)

, H

B
R e(.::) = cosh (.::" H)R 2 (O) + sinh ('::y'G)R I(0)

, G

G = AB and H = BA.
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(25)

(26)

We note that the above solution still contains both the matrices A and B. We shall exploit
the properties of the matrices 1I1volved. It follows from (26) that

(27)

and

!G- ill = IH 1 --All = I(H - j.l) II = IH-ill

for arbitrary i.. Hence. the eIgenvalues of G are the same as those of H. It follows also from
(15) that

and

I r1-r
" H s1l1h\.::" H) =L" G 5111h('::v G)J.

(28)

(29)

Therefore, the solution (16) can be rewritten entirely m terms of only one matrix, either G
or H. The solution is now given by

(30)

which contains only matrix G. The matrix functions

cosh la, G) and 5mh (.::, G)
, G

are expanded into a matrix polynomial as follows

cosh (z, G) = 2.: (lG
"

sinh (.::" G) = 2.: h,e.
, G "

(31)

where no higher powers of G are needed on account of the Cayley-Hamilton theorem.
Assuming that matrix G takes distinct eigenvalues. say 1]0, 1]1' 1]2 and 1]" the coefficients

ai and bi in (31) can be determined as follows:
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/7i1 '7t, '1,; 'j'",h("O))
/7, '7i /7 : cosh (:::17])

,
cosh (:::172)'7, '/; /7 ;

'/, /7i II: cosh(:::I7d

I
--- sinh (ZlJo)

JlJo
,/" 170 lJi; I

----.- sinh (ZI/])
1/, II' 1/; .JI/]

'I' 17i /7 ; I
-----_.- sinh (ZI/2)

/1 'Ii // ; .J 1/2

I
--- sinh (ZI/,)

.JI/'

(32a)

(32b)

Once the matrix functions in (31) are determined, the transfer matrix in (30) can readily be
obtained. Then boundary conditions on the top and bottom surfaces are introduced to
determine the unknown quantities on the boundary. Once all the quantities on the boundary
are determined, (30) and (6) can be used to calculate all unknown quantities at arbitrary z.

, !\IMERICAL EXAMPLES

Here, we present a numerical study of a rectangular piezoelectric lamina for which an
exact solution is presented above. The material chosen for the lamina is BaTi03 which has
the following material properties (Berlincourt ef al.. 1964; Shindo et al., 1993) : C,] = 16.6,
C]2 = 7.7. Ct, = 7.8, C n = 16.2. C4 = 4.3 (l01li Nm- 2

); e,] = -4.4, e" = 18.6, elS = 11.6
(em 2): 1:] i = 1.12, En = 1.26 (10 ' CVm I). Although the primary objective of this
numerical study is to test the procedure described above, the analysis should also reveal
basic tenets of the electro-elastic coupling in the piezoelectric lamina. For the purpose of
comparison. a purely elastic lamina with the same elastic properties is also considered
(piezoelectric constants are set to zero) 1t should be remembered that all state variables
(three displacement components. electrical potential, three out-of-plane stresses, and trans­
verse electric displacement) are obtained simultaneously in our approach. The in-plane
stresses and electric displacements (u ". u" u,. D. and D,) are then obtained from (6).
Although the mechanical and electrical loading is considered separately here for trans­
parency. a combined mechanical and electrical loading, if desired. can be treated without
any additional difficulty. A sinusoidal distribution is assumed for both the mechanical and
electrical loading for the sake of simplicity.

Mcc!zanicalloadiny
A simply supported square lall1l11a (a = h = I m) of thickness 0.2 (m) is subjected to

a mechanical load on the top surface with the following sinusoidal distribution:

u, == 'T" sin (rna) sin (nl'/h). (33)

where 11" = 1 (Nm 2). The field point IS chosen at x.a = 0.75 and y/h = 0.25. Figures I and
2 show the variation of U and V. respectively. as a function of the thickness coordinate Z

where the solid line stands for the piezoelectric lamina and the dotted line for the purely
elastic one. The in-plane displacements exhibit linear distribution across the thickness of
the lamina. Note that the discrepancy between the two cases is rather small. The transverse
displacement W for the two cases is shown in Fig. 3 which demonstrates essentially uniform
distribution across the thickness although its magnitudes are quite different between the
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two cases. Figure 4 shows the electric potential ¢ across the thickness for piezoelectric
plate. The potential exhibits a polynomial distribution. Note that the electric potential1J is
zero in the case of purely elastic plate due to the obvious lack of electroelastic coupling.
Figure 5 shows the distribution of the out-of-plane stress a c (due to the symmetry of the
problem, (flC exhibits similar distribution). Figure 6 shows the distribution of out-of-plane
stress component (fcc. It is interesting to note that all out-of-plane stresses take the same
values between the two cases. Figure 7 shows the out-of-plane electric displacement Dc and
Fig. 8 shows the in-plane stress (f" for the two cases. Note that other in-plane stress
components (fl' and 0"" exhibit similar distribution as 0"".

Electric loading
The same plate is loaded electrically on the upper surface by a transverse electric

displacement of sinusoidal distribution:
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j) - D" sin (7[\ uhlll (JTI' h) (34)

where Do is taken as I ((jill I. The field point is chosen at thc same location as the previous
example of mechanically loaded plate. Figures l) and 10 shmv the distribution of the
transverse displacement and electric potential across the thickness of the plate. respectively.
Note that therc exist significant discrepancies between the two cases. Figure II shows the
distribution of the out-of-plane stress (J I for the two cases. Figure 12 shows the distribution
of Dc which exhibits no discrcpancy betwecn the tv. 0 cases. The in-plane stress (J 1.1 is shown
in Fig. 13. Figure 14 shows the distribution of the lI1-plane electric displacement D, which
shows no discrepancy between the two cases despite our cxpectation otherwise (based on
the previous example of the mechanically-loaded plate). In order to explain this. let us
recall the state equation (6):
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f) =
l', (-¢

('" I'.,"'
(35)

where the first term on the right-hand-side of (:IS) IS the electric displacement from the
uncoupled electrostatics and the next two terms represent the difference between the two
cases arising from the electroelastic interaction. For the material chosen for this example,
('1):C4 is 0(10 10) and (1" is 0(10 'i. Therefore. the second term in the right-hand-side of
(35) has very little contribution. The coefficient ('TC, of the third term is also very small
due to the same reason. whereas the value of /(7) I'.' is very close between the two cases.
Therefore, there is no noticeable discrepancy between the two cases.

h CO\\CUDI,\C; RF]\t·,\RKS

A state-space-based solution method was developed to study electroelastic responses
of a piezoelectric lamina in an attempt to develop an efficient analytical technique for
electromechanical analysis of laminated piezoelectric structures. The state space meth­
odology developed was employed to obtain an exact solution for a rectangular piezoelectric
lamina with simple supports in the form ofinfil1lte series, A square piezoelectric plate made
of BaTi01 is considered as a numerical example and electromechanical responses were
compared to those of a purely elastic one, 11 is noted that although only one particular
class of crystal symmetry (namely, 6mm class) is considered. this study entails a reasonable
degree of generality since most man-made piezoelectric materials commonly used in lami­
nated electromechanical deVICes fall into this symmetry class and full electromechanical
coupling as well as matenal anisotropy are preserved. The most Il1teresting result obtained
from the analysis was that the out-of-plane stre~ses ,ll1d electric displacement were not
influenced by the electroelastic coupling, Howevcr. further studies are required for more
definitive conclusions on this issuc, Thc analytical approach dne/oped herein can readily
be extended for the study of multilayered laminatcd structures WIth general interlayer and
boundary conditions, Since the transfer matrix of a layer is knO\vn, a global transfer matrix
for a layered structure can be assembled by incorporating the interlayer contact conditions
and boundary conditions, The order of the global transfer matrix does not depend on the
number of layers since the transfer matrix is multiplicative in nature for some common
interlayer contact conditions (e,g, perfectly bonded contact), For other general interlayer
contact or boundary conditions, such as partially bonded contacb or Winkler mattress, the
global transfer matrix can be constructed by adoptll1g the generalized procedure suggested
in Lee and Jiang (1994b) for purely elastic layered media,

Ackl/(i11l~d!f~III(,III\ rhe materia] presented 111 thIS st ud, I' odsed upon "or~ supported in part by the National
Science Foundatlnn under grdnt \1SS-91I .121 h The suppnrt h gLltL'I'ttll, acknn\\ledged.
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